Born Again Neural Networks

نویسندگان

  • Tommaso Furlanello
  • Zachary C. Lipton
چکیده

Knowledge distillation techniques seek to transfer knowledge acquired by a learned teacher model to a new student model. In prior work, the teacher typically is a high-capacity model with formidable performance, while the student is more compact. By transferring knowledge, one hopes to benefit from the student’s compactness while suffering only minimal degradation in performance. In this paper, we revisit knowledge distillation but with a different objective. Rather than compressing models, we train students that are parameterized identically to their parents. Surprisingly, these born again networks (BANs), tend to outperform their teacher models. Our experiments with born again dense networks demonstrate state-of-the-art performance on the CIFAR-100 dataset reaching a validation error of 15.5 % with a single model and 14.9 % with our best ensemble. Additionally, we investigate knowledge transfer to architectures that are different, but with capacity comparable to their teachers. In these experiments, we show that similar advantages can be achieved by transferring knowledge between dense networks and residual networks of similar capacity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Born Again Trees

Tree predictors such as CART or C4.5 are often not as accurate as neural nets or use of multiple trees. But these latter methods lead to predictors whose structure is difficult to understand, whereas trees have a universal simplicity. Because of this, it is appealing to try and find tree representations of more complex predictors. We study tree representers of multiple tree predictors. These re...

متن کامل

Assessment of Spatial Multi-Criteria Decision-Making with Process of the Artificial Neural Networks Method to Site Selection of the Wastewater Treatment Plant (Case Study: Qeshm Island)

Wastewater treatment technology in the cyclic nature of the process that takes a long time. But man tries to rush to their needs with experience and understanding of the natural processes of interaction, and using technology to build their Industrial development is authorized. Sewage treatment reed have been born from the vision of man's increasing need to water daily decreases the natural reso...

متن کامل

Assessment of Spatial Multi-Criteria Decision-Making with Process of the Artificial Neural Networks Method to Site Selection of the Wastewater Treatment Plant (Case Study: Qeshm Island)

Wastewater treatment technology in the cyclic nature of the process that takes a long time. But man tries to rush to their needs with experience and understanding of the natural processes of interaction, and using technology to build their Industrial development is authorized. Sewage treatment reed have been born from the vision of man's increasing need to water daily decreases the natural reso...

متن کامل

کاهش رنگ تصاویر با شبکه‌های عصبی خودسامانده چندمرحله‌ای و ویژگی‌های افزونه

Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...

متن کامل

INTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES

The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017